Chaos and Shadowing Lemma for Autonomous Systems of Infinite Dimensions
نویسنده
چکیده
For finite-dimensional maps and periodic systems, Palmer rigorously proved Smale horseshoe theorem using shadowing lemma in 1988 [20]. For infinitedimensional maps and periodic systems, such a proof was completed by Steinlein and Walther in 1990 [30], and Henry in 1994 [9]. For finite-dimensional autonomous systems, such a proof was accomplished by Palmer in 1996 [17]. For infinite-dimensional autonomous systems, the current article offers such a proof. First we prove an Inclination Lemma to set up a coordinate system around a pseudo-orbit. Then we utilize graph transform and the concept of persistence of invariant manifold, to prove the existence of a shadowing orbit.
منابع مشابه
Chaos in PDEs and Lax Pairs of Euler Equations
Recently, the author and collaborators have developed a systematic program for proving the existence of homoclinic orbits in partial differential equations. Two typical forms of homoclinic orbits thus obtained are: (1) transversal homoclinic orbits, (2) Silnikov homoclinic orbits. Around the transversal homoclinic orbits in infinite-dimensional autonomous systems, the author was able to prove t...
متن کاملChaotic property for non-autonomous iterated function system
In this paper, the new concept of non-autonomous iterated function system is introduced and also shown that non-autonomous iterated function system IFS(f_(1,∞)^0,f_(1,∞)^1) is topologically transitive for the metric space of X whenever the system has average shadowing property and its minimal points on X are dense. Moreover, such a system is topologically transitive, whenever, there is a point ...
متن کاملRotation number and its properties for iterated function and non-autonomous systems
The main purpose of this paper is to introduce the rotation number for non-autonomous and iterated function systems. First, we define iterated function systems and the lift of these types of systems on the unit circle. In the following, we define the rotation number and investigate the conditions of existence and uniqueness of this number for our systems. Then, the notions rotational entropy an...
متن کاملOn Reliability Of Simulations Of Complex Co-Evolutionary Processes
Infinite population models of co-evolutionary dynamics are useful mathematical constructs hinting at the possibility of a wide variety of possible dynamical regimes from simple attractive fixed point behavior, periodic orbits to complex chaotic dynamics. We propose to use the framework of shadowing lemma to link such mathematical constructs to large finite population computer simulations. We al...
متن کاملChaos and Shadowing Around a Heteroclinically Tubular Cycle With an Application to Sine-Gordon Equation
The theory of chaos and shadowing developed recently by the author is amplified to the case of a heteroclinically tubular cycle. Specifically, let F be a C3 diffeomorphism on a Banach space. F has a heteroclinically tubular cycle that connects two normally hyperbolic invariant manifolds. Around the heteroclinically tubular cycle, a Bernoulli shift dynamics of submanifolds is established through...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003